More Website Templates @ Templates.com!

La Teoría Neutralista.

En 1980, dos genes de la hemoglobina fueron secuenciados. Aunque ambos codificaban el mismo producto, sus secuencias de nucleótidos diferían en el 0'8% si sólo se tenían en cuenta las sustituciones de un aminoácido por otro, y en un 2'4% si se incluían en la comparación los aminoácidos presentes en un gen y ausentes en otro. Otros genes secuenciados posteriormente en otros organismos llevaban a la misma conclusión: en la secuencia de ADN, los organismos quizá sean heterocigotos para todos sus loci.

La gran variación revelada por estos estudios constituye uno de los fundamentos de la teoría neutralista, otro de los desafíos a la teoría sintética.

Su principal expositor es Motoo Kimura, y en su opinión, la mayoría de los genes mutantes son selectivamente neutros, es decir, no tienen selectivamente ni más ni menos ventaja que los genes a los que sustituyen; en el nivel molecular, la mayoría de los cambios evolutivos se deben a la deriva genética de genes mutantes selectivamente equivalentes. (La deriva genética consiste en el cambio puramente aleatorio de las frecuencias génicas, debido a que cualquier población consta de un número finito de individuos. La razón es la misma por la que es posible que salga cara más de 50 veces cuando lanzamos una moneda al aire cien veces).

Kimura se paró a pensar cuál sería la probabilidad de mutación de un mutante que aparece en una población finita y muestra cierta ventaja selectiva. Es decir, ¿cuál es la probabilidad de que ese gen se propague por toda la población? Kimura llegó a tres hallazgos:

1. Para una proteína determinada, la tasa de sustitución de un aminoácido por otro es aproximadamente igual en muchas líneas filogenéticas distintas.

2. Estas sustituciones, en vez de seguir un modelo, parecían ocurrir al azar.

3. La tasa total de cambio en el ADN era muy alta, del orden de una sustitución de una base nucleotídica por cada dos años en una línea evolutiva de mamíferos.

En cuanto a la variabilidad dentro de la especie, se vio que la mayor parte de las proteínas eran polimórficas, es decir, que existían en diferentes formas, y en muchos casos sin efectos fenotípicos visibles ni una correlación con el medio ambiente.

Así, Kimura llegó a dos conclusiones:

1ª La mayoría de las sustituciones de nucleótidos debían ser el resultado de la fijación al azar de mutantes neutros, o casi neutros, más que el resultado de una selección darwiniana.

2ª Muchos de los polimorfismo proteínicos debían ser selectivamente neutros o casi neutros y su persistencia en la población se debería al equilibrio existente entre la aportación de polimorfismo por mutación y su eliminación al azar.

Los seleccionistas sostienen que para que un alelo mutante se difunda en una especie, debe poseer alguna ventaja selectiva; para los neutralistas, algunos mutantes pueden difundirse en una población sin tener ninguna ventaja selectiva, su suerte dependería del azar: su frecuencia fluctúa, incrementándose o decreciendo fortuitamente con el tiempo, porque sólo se escoge un número relativamente pequeño de gametos, de entre el amplio número de gametos masculinos y femeninos. En el curso de esta deriva aleatoria, la inmensa mayoría de los alelos mutantes se pierden por azar, pero la fracción restante termina por fijarse en la población.

Supongamos que v es la tasa de mutación por gameto y por unidad de tiempo (generación). Puesto que cada individuo tiene dos juegos de cromosomas, el número total de mutantes nuevos introducidos en cada generación, en una población de N individuos es 2Nv.

Sea u la probabilidad con la que un mutante logre la fijación, entonces la tasa k de sustituciones mutantes por unidad de tiempo viene dada por la ecuación k = 2Nvu. Es decir, aparecen 2Nv nuevos mutantes en cada generación, de los que la fracción u logra fijarse, y k representa la tasa evolutiva en función de las sustituciones mutantes.

La probabilidad u de fijación es bien conocida en genética de poblaciones. Si el mutante es selectivamente neutro, u = 1 / (2N). Cualquiera de los 2N genes de la población tiene la misma probabilidad de fijarse que los demás; por tanto, la probabilidad de que el nuevo mutante sea el gen afortunado es de 1 / (2N). (Esto supone que se considera el proceso durante un largo período de tiempo). Sustituyendo 1 / (2N) por u en la ecuación de la tasa evolutiva, se obtiene k = v. Es decir, la tasa evolutiva en función de las sustituciones mutantes en la población equivale simplemente a la tasa de mutación por gameto, con independencia de cual sea el tamaño de la población.

Esta relación rige sólo para genes neutros. Si el mutante tiene una pequeña ventaja selectiva s, entonces u es aproximadamente igual a 2s y la ecuación de la tasa evolutiva se convierte en k = 4Nsv. Es decir, la tasa evolutiva para los genes con ventaja selectiva depende del tamaño de la población, de la ventaja selectiva y de la proporción en que los mutantes con una ventaja selectiva determinada aparecen en cada generación.

Los valores tan constantes de tasas evolutivas observados en diferentes organismos son más complatibles con la relación neutralista k = v que con la seleccionista k = 4Nsv.

En cuanto al polimorfismo, los neutralistas sostienen que este es selectivamente neutro y que se mantiene en una población mediante el aporte mutacional y la eliminación al azar. Desde el punto de vista neutralista, el polimorfismo y la evolución molecular no son dos fenómenos distintos: el polimorfismo es sólo una fase de la evolución molecular.

Incluso se ha hallado una fuerte correlación entre la variabilidad genética (o polimorfismo) de las proteínas y el peso de sus subunidades moleculares. Esto halla fácil justificación neutralista: cuanto mayor sea el tamaño de una subunidad, más alta será su tasa de mutación. En otras palabras, y como ya se apuntaba más arriba, los neutralistas consideran que las principales causas determinantes del polimorfismo son la estructura y la función molecular; para los seleccionistas, las causas principales son las ambientales.

Para finalizar, decir que ni los neutralistas niegan la selección natural, ni los seleccionistas proscriben el papel de la deriva genética en la misma.

El neutralismo y el reloj molecular.

Un gen o proteína se pueden considerar relojes moleculares, puesto que su tasa de evolución es relativamente constante a lo largo de períodos largos, y toma valores semejantes en distintas especies.

Los neutralistas postulan que esta aparente constancia es incompatible con la noción de que el cambio molecular refleja la acción de la selección natural. Mantienen que de la teoría sintética caben esperar tasas variables de evolución molecular, puesto que la intensidad de la presiones selectivas debe variar temporalmente y de una especie a otra. También opinan que la mejor justificación del reloj molecular es aceptar que las variaciones se incorporan aleatoriamente al acervo genético, puesto que así el proceso tendrá un ritmo más o menos constante.

La teoría sintética, sin embargo, no obliga a que el ritmo de evolución sea tan irregular como suponen sus críticos. En tanto que la función de un gen o proteína sea la misma en diferentes linajes evolutivos, no tienen por qué sorprender que evolucionen al mismo ritmo, ya que las restricciones a que estará sometido serán las mismas.

Aunque la función fundamental de un gen o proteína no cambie en el transcurso de la evolución, no hay razón alguna para esperar que las fluctuaciones experimentadas por su ritmo evolutivo sean frecuentes o dilatadas. Los enormes espacios de tiempo a lo largo de los cuales se calculan los ritmos de evolución molecular hacen que las fluctuaciones se compensen una son otras, produciéndose así la aparente constancia de ellas. De hecho, existen modelos matemáticos que demuestran que el reloj molecular es compatible con la suposición de que la evolución molecular está regida por selección natural.

Artículos relacionados